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Discrete symmetries andS-matrix of the XXZ chain
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Physics Department, PO Box 248046, University of Miami, Coral Gables, FL 33124, USA

Received 5 August 1998

Abstract. We formulate the notion of parity for the periodicXXZ spin chain within the
quantum inverse scattering method. We also propose an expression for the eigenvalues of the
charge conjugation operator. We use these discrete symmetries to help classify low-lyingSz = 0
states in the critical regime, and we give a direct computation of theS-matrix.

1. Introduction and summary

The periodic anisotropic Heisenberg (or ‘XXZ’) spin chain, with the Hamiltonian

H = 1
4

N∑
n=1

{σxn σ xn+1+ σyn σ yn+1+1(σznσ zn+1− 1)} σN+1 ≡ σ1 (1)

has a long and rich history [1–14]. It is the prototype of all integrable models. The
development of the quantum inverse scattering method (QISM)/algebraic Bethe ansatz [7]
systematized earlier results, and paved the way for far-reaching generalizations.

Parity symmetry has played a valuable role in continuum quantum field theory, including
integrable quantum field theory [15]. However, the notion of parity for discrete spin models,
in particular for those which are integrable, has not (to our knowledge) been discussed. We
show here that parity has a simple realization in the algebraic Bethe ansatz, involving
negation of the spectral parameter, i.e.λ→−λ (see equation (13) below).

We consider also charge conjugation symmetry [5]. We conjecture that Bethe ansatz
states of theXXZ chain with Sz = 0 are eigenstates of the charge conjugation operator,
with eigenvalues(−1)ν , whereν is given by equation (17).

Working within the framework of the string hypothesis [4], we use these discrete
symmetries to help classify low-lyingSz = 0 states [6, 9] in the critical regime with
0 < 1 < 1. Moreover, we compute theS-matrix elements corresponding to these states
using the method of Korepin [15] and Andrei and Destri [16]. Our results for theS-matrix
agree with those obtained by thermodynamic methods [11, 12].

This letter is organized as follows. In section 2, after a brief review of the algebraic
Bethe ansatz, we define the parity operator, and we show how it acts on the fundamental
quantities of the QISM formalism. We also review the definition of the charge conjugation
operator, and we propose an expression for the corresponding eigenvalues. In section 3
we use the root densities for low-lyingSz = 0 states in the critical regime to calculate the
parity and charge conjugation quantum numbers of these states, as well as theS-matrix.
We conclude in section 4 by briefly listing some remaining unanswered questions. A more
detailed exposition of these results will be given elsewhere [17].
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2. Algebraic Bethe ansatz and discrete symmetries

In order to fix notations, we briefly recall the essential elements of the algebraic Bethe
ansatz for theXXZ chain (see the above-cited references for details). We consider theA

(1)
1

R-matrix

R(λ) =


a(λ)

b(λ) c

c b(λ)

a(λ)

 (2)

where

a(λ) = sinh(µ(λ+ i))

sinh(iµ)
b(λ) = sinh(µλ)

sinh(iµ)
c = 1. (3)

We regardR(λ) as an operator acting on the tensor product spaceV ⊗ V , whereV is a
two-dimensional complex vector space. ThisR-matrix is a solution of the Yang–Baxter
equation

R12(λ− λ′) R13(λ) R23(λ
′) = R23(λ

′) R13(λ) R12(λ− λ′) (4)

where Rij are operators onV ⊗ V ⊗ V , with R12 = R ⊗ 1, etc. TheL operators
L0n(λ) = R0n(λ− i

2) act on so-called auxiliary (0) and quantum (n) spaces. The monodromy
matrix T0(λ) is defined as a product ofN such operators

T0(λ) = L0N(λ) . . . L01(λ) =
(
A(λ) B(λ)

C(λ) D(λ)

)
. (5)

The transfer matrixt (λ), defined by tracing over the auxiliary space

t (λ) = tr0 T0(λ) = A(λ)+D(λ) (6)

has the commutativity property [t (λ), t (λ′)] = 0. The transfer matrix also commutes with
the z component of the total spin,Sz = 1

2

∑N
n=1 σ

z
n . The Hamiltonian

H = i sinµ

2µ

d

dλ
log t (λ)

∣∣∣∣
λ= i

2

− N
2

cosµ (7)

coincides with theXXZ Hamiltonian (1), provided1 = cosµ. The critical regime
−1 < 1 < 1 corresponds toµ real, with 0< µ < π . The momentum operatorP is
defined byP = 1

i log t ( i
2), sincet ( i

2) is the one-site shift operator.

Let ω+ =
(1

0

)⊗N
be the ferromagnetic vacuum vector with all spins up. The Bethe state∏M

α=1B(λα)ω+ is an eigenstate of the transfer matrixt (λ) if {λ1, . . . , λM} are distinct and
obey the Bethe ansatz equations(

sinhµ(λα + i
2)

sinhµ(λα − i
2)

)N
=

M∏
β=1
β 6=α

sinhµ(λα − λβ + i)

sinhµ(λα − λβ − i)
α = 1, . . . ,M. (8)

The corresponding energy and momentum are given by

E = − sin2µ

M∑
α=1

1

cosh(2µλα)− cosµ
P = 1

i

M∑
α=1

log
sinhµ(λα + i

2)

sinhµ(λα − i
2)

(mod 2π)

(9)

andSz = N
2 −M.
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2.1. Parity

We define the parity operator5 on a ring ofN spins by

5 Xn5
−1 = XN+1−n (10)

whereXn is any operator at siten ∈ {1, 2, . . . , N}. Clearly,5 acts on the tensor product
spaceV ⊗N . We can represent5 by

5 =
{
P1,NP2,N−1 . . .P N

2 ,
N+2

2
for N = even

P1,NP2,N−1 . . .P N−1
2 , N+3

2
for N = odd

(11)

wherePij is the permutation matrix which permutes theith andj th vector spaces. We note
that5 = 5−1 = 5† and hence55† = 1.

The ‘parity invariance’ of theR-matrix P12R12(λ)P12 = R12(λ) implies that theXXZ
Hamiltonian is parity invariant,5H5 = H . Moreover,5Sz5 = Sz and5P5 = −P .

Under parity, the order of theL operators in the monodromy matrix is reversed,
5 T0(λ)5 = L01(λ) . . . L0N(λ). With the help of the ‘time-reversal’ invariance of the
R-matrix R12(λ)

t1t2 = R12(λ) (tj denotes transposition in thej th space), one can show that

5T0(λ)5 = (−)N−1W0T0(−λ)t0W0 W = iσy. (12)

In particular, we see that5t(λ)5 = (−)N t (−λ). Evidently, the parity operator does not
commute with the transfer matrix. We also obtain from (12) the fundamental result

5B(λ)5 = (−)N−1B(−λ). (13)

We shall use this result, together with the fact5ω+ = ω+, to investigate whether the
eigenvectors of the transfer matrix are also eigenvectors of the parity operator. Since
{5,P } = 0, a Bethe state can be an eigenstate of5 only if the momentum isP = 0 or π
(mod 2π ).

2.2. Charge conjugation

The charge conjugation matrixC is defined (see, e.g. [5]) byC = σx , since it interchanges
the two-component spins

(1
0

)
and

(0
1

)
. We denote byC the corresponding operator acting on

the tensor product spaceV ⊗N ,

C = C1 . . . CN . (14)

It has the propertiesC = C−1 = C†, and henceCC† = 1.
The invariance of theR-matrix under charge conjugationC1C2R12(λ)C1C2 = R12(λ)

implies that the monodromy matrix obeys

CT0(λ)C = C0T0(λ)C0. (15)

In particular, we see that the transfer matrix is invariant under charge conjugationCt (λ)C =
t (λ), while the operatorB(λ) is mapped toC(λ),

CB(λ)C = C(λ). (16)

Moreover,Cω+ = ω−, whereω− =
(0

1

)⊗N
is the ferromagnetic vacuum vector with all

spins down.
Since {C, Sz} = 0, a Bethe state can be an eigenstate ofC only if Sz = 0. This

corresponds toM = N/2 with N an even integer.
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We conjecture that the eigenvectors of the transfer matrix withM = N/2 are also
eigenvectors ofC, with eigenvalues(−)ν , where

ν = 2iµ

π

N/2∑
α=1

λα + N
2

(mod 2). (17)

This conjecture is supported by explicit checks forN = 2 andN = 4, and it corresponds
to theXXZ limit of a result [5, 6] for theXYZ chain. Unfortunately, Baxter’sQ-operator
proof of theXYZ result, which relies on the quasidouble-periodicity of certain elliptic
functions, does not survive theXXZ limit. (The XYZ result is important, and so it is
noteworthy that there does not appear to be a proof of it within the generalized algebraic
Bethe ansatz.) Certainly, equation (16) alone does not seem to be sufficiently powerful to
investigate this conjecture.

3. Low-lying Sz = 0 states

We now examine some low-lyingSz = 0 states of the criticalXXZ chain within the
framework of the string hypothesis [4, 6]. From the so-called root densities, we compute
the parity and charge conjugation quantum numbers of these states, and we give a direct
computation of the two-particleS-matrix.

3.1. Ground state

For simplicity, we henceforth restrict ourselves to the range 0< µ < π
2 . The ground state

then lies in the sector withN even, and is characterized byM = N/2 real roots [3, 4]. A
quantity of central importance is the root densityσ(λ), which is defined so that the number
of λα in the interval [λ, λ+dλ] is Nσ(λ) dλ. The root density for the ground state is given
by σ(λ) = (2 coshπλ)−1 ≡ s(λ).

We now argue that the ground state is a parity eigenstate. Denoting the ground state by
|v〉, we have

|v〉 =
N/2∏
α=1

B(λα)ω+ = exp

( N/2∑
α=1

logB(λα)

)
ω+ = exp

(
N

∫ ∞
−∞

dλ σ(λ) logB(λ)

)
ω+. (18)

Moreover, using (13), we obtain

5|v〉 = (−)N/2
N/2∏
α=1

B(−λα)ω+ = (−)N/2 exp

(
N

∫ ∞
−∞

dλ σ(λ) logB(−λ)
)
ω+

= (−)N/2 exp

(
N

∫ ∞
−∞

dλ σ(−λ) logB(λ)

)
ω+ (19)

where in passing to the last line we have made the change of variablesλ→ −λ. Finally,
comparing equations (18) and (19), and using the fact that the root density is an even
function σ(−λ) = σ(λ), we conclude that

5 |v〉 = (−)N/2|v〉. (20)

The nondegeneracy of the ground state implies that this state is also a charge conjugation
eigenstate. Formula (17) implies that the corresponding eigenvalue is also(−)N/2, since

N/2∑
α=1

λα = N
∫ ∞
−∞

dλ σ(λ)λ = 0 (21)

where again we have used the fact that the root density is an even function.
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3.2. Two-particle excited states

There are two distinct two-particle states withSz = 0 (again withN even andM = N/2)
[6, 9] which are distinguished by their parity and charge conjugation quantum numbers.
The first state, which we label by (a), is the two-hole state with one string of length 2 (i.e
a pair of roots of the formλ0± i

2, with λ0 real) and all other roots real. The corresponding
density is given by

σ(a)(λ) = s(λ)+ 1

N

[ 2∑
α=1

J (λ− λ̃α)− a1(λ− λ0;µ′)
]

(22)

where

J (λ) = 1

2π

∫ ∞
−∞

dω e−iωλ
sinh(( π

µ
− 2)ω2 ))

2 sinh(( π
µ
− 1)ω2 ) cosh(ω2 )

a1(λ;µ) = µ

π

sinµ

cosh(2µλ)− cosµ

(23)

andµ′ is the ‘renormalized’ anisotropy parameter given byµ′ = πµ/(π − µ). Moreover,
{λ̃α} are the hole rapidities, and the centre of the 2-string is given byλ0 = (λ̃1+ λ̃2)/2.

Since the densityσ(a)(λ) is not an even function ofλ for generic values of{λ̃α} , a
generalization of the argument (18)–(20) implies that this state is not a parity eigenstate.
However, in the ‘rest frame’ [15]

λ̃1+ λ̃2 = 0 (24)

the density is an even function, and therefore the state is a parity eigenstate, with parity
(−)N/2. One can verify that in the rest frame the momentum isP = 0 or π (mod 2π ),
which is consistent with the fact{5,P } = 0.

According to our conjecture, this state is an eigenstate of charge conjugation for all
values of{λ̃α}, with eigenvalue given by formula (17). Remarkably, the first term of that
formula gives a vanishing contribution. We conclude that the charge conjugation eigenvalue
for this state is also(−)N/2.

We consider now the secondSz = 0 two-particle state, which we label by (b). This
is the two-hole state with one ‘negative-parity’ string of length 1 (i.e. a root of the form
λ0+ iπ

2µ , with λ0 real) [4] and all other roots real. The density is given by

σ(b)(λ) = s(λ)+ 1

N

[ 2∑
α=1

J (λ− λ̃α)− b1(λ− λ0;µ′)
]

(25)

whereb1(λ;µ) = a1(λ+ π
2µ ;µ), and againλ0 = (λ̃1+ λ̃2)/2.

As in case (a), this state is not a parity eigenstate for generic values of{λ̃α}. Let
us now restrict ourselves to the rest frame (24). The Bethe vector is then given by

|v〉 = B( iπ
2µ)

∏ N
2 −1
α=1 B(λα)ω+. Acting with the parity operator using equation (13), we

obtain

5|v〉 = (−)N/2B
(
− iπ

2µ

) N
2 −1∏
α=1

B(−λα)ω+

= −(−)N/2B
(

iπ

2µ

) N
2 −1∏
α=1

B(−λα)ω+

= −(−)N/2|v〉. (26)
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In passing to the second line, we have used the quasiperiodicity propertyB(λ ± iπ
µ
) =

(−)N+1B(λ), and to arrive at the last line we use the fact that (in the rest frame) the density
is an even function ofλ. Thus, the state has parity−(−)N/2.

Unlike case (a), here the first term of formula (17) for the charge conjugation eigenvalue
does give a contribution, namely,−1. We conclude that the charge conjugation eigenvalue
for this state is also−(−)N/2.

We recall that a boson–antiboson state with a symmetric (antisymmetric) wavefunction
has positive (negative)5 andC, while for a fermion–antifermion state the opposite is true
(see, e.g. [18, 19].) Evidently the statistics of theXXZ excitations vary with the value
of N .

3.3. S-matrix

We define theS-matrix S(λ̃1, λ̃2) by the momentum quantization condition [15, 16]

(eip(λ̃1)NS(λ̃1, λ̃2)− 1)|λ̃1, λ̃2〉 = 0 (27)

where λ̃1, λ̃2 are the hole rapidities, andp(λ) is the hole momentum. TheS matrix
eigenvalues are given (up to a rapidity-independent phase factor) by

S(j) ∼ exp

{
i2πN

∫ λ̃1

−∞
(σ(j)(λ)− s(λ)) dλ

}
j = a, b (28)

whereS(a) andS(b) are the eigenvalues of theS-matrix corresponding to states (a) and (b),
respectively.

Recalling expressions (22), (25) for the root densities, it is clear that theS-matrix
eigenvalues have the common factor

S(0) = exp

{
i2π

2∑
α=1

∫ λ̃1

−∞
J (λ− λ̃α) dλ

}

= exp

{∫ ∞
0

dω

ω

sinh(( π2µ′ − 1
2)ω) sinh(iωλ̃)

sinh( πω2µ′ ) cosh(ω2 )

}

=
∞∏
n=0

{
0[(1+ π

µ′ n− iλ̃)/2]

0[(1+ π
µ′ n+ iλ̃)/2]

0[(2+ π
µ′ n+ iλ̃)/2]

0[(2+ π
µ′ n− iλ̃)/2]

×
0[( π

µ′ (n+ 1)+ iλ̃)/2]

0[( π
µ′ (n+ 1)− iλ̃)/2]

0[(1+ π
µ′ (n+ 1)− iλ̃)/2]

0[(1+ π
µ′ (n+ 1)+ iλ̃)/2]

}
(29)

whereλ̃ = λ̃1− λ̃2. Moreover, we obtain (up to a rapidity-independent phase factor)

S(a) = S(0) sinh(µ′(λ̃+ i)/2)

sinh(µ′(λ̃− i)/2)
S(b) = S(0) cosh(µ′(λ̃+ i)/2)

cosh(µ′(λ̃− i)/2)
. (30)

This coincides with theS-matrix of sine-Gordon/massive Thirring model [15, 20, 21],
provided we identify the sine-Gordon coupling constant asβ2 = 8(π − µ). This result has
been obtained for theXXZ chain previously, although by less direct means, in [11, 12].
Note that the regime 0< µ < π

2 in which we work corresponds to the ‘repulsive’ regime
4π < β2 < 8π .
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4. Outlook

A number of issues remain to be explored. It would be interesting to find a proof (or
counterexample!) of formula (17) for the charge conjugation eigenvalues of the Bethe
ansatz states. It may be worthwhile investigating discrete symmetries in integrable chains
constructed with higher-rankR-matrices, [22, 23] such asA(1)N−1 with N > 2. Since these
R-matrices are not parity invariant, neither are the corresponding Hamiltonians. However,
theR-matrices do have PT symmetry, which may lead to a useful symmetry on the space of
states. Moreover, we have not discussed here the interesting case of the noncritical (1 > 1)
regime [24].

We thank F Essler and V Korepin for valuable discussions. This work was supported in
part by the National Science Foundation under grant PHY-9870101.
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